Extrapolation of a PBPK model for dioxins across dosage regimen, gender, strain, and species.
نویسندگان
چکیده
A physiologically based pharmacodynamic (PBPK) model for 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) was developed based on pharmacokinetic data from acute oral exposures of TCDD to female Sprague-Dawley rats (Wang et al., 1997, Toxicol Appl. Pharmacol 147, 151-168). In the present study, the utility of this model to predict the disposition of TCDD in male and female Sprague-Dawley and female Wistar rats exposed to TCDD through different dosage regimens was examined. The ability of the model to predict the disposition of 2-iodo-3,7,8-trichlorodibenzo-p-dioxin (ITrCDD) in mice (Leung, et al., 1990, Toxicol. Appl. Pharmacol. 103, 399-410) was also examined. The ability of the model to predict across routes of exposure was assessed with intravenous injection data (5.6 microg/kg bw) (Li et al., 1995, Fundam. Appl. Toxicol. 27, 70-76) in female rats. Analysis across gender extrapolations used data for male Sprague-Dawley rats exposed intravenously to 9.25 microg TCDD/kg bw (Weber et al., 1993, Fundam. Appl. Toxicol. 21, 523-534). The analysis of across-dosage regimen and stains of rats extrapolations were assessed using data from rats exposed to TCDD through a loading/maintenance dosage regimen (Krowke et al., 1989, Arch. Toxicol. 63, 356-360). The physiological differences between gender, strain, and species were taken into account when fitting the PBPK model to these data sets. The results demonstrate that the PBPK model for TCDD developed for female Sprague-Dawley rats exposed by acute oral dosing accurately predicts the disposition of TCDD, for different gender and strain of rats across varying dosage regimens, as well as in a strain of mice. Minimal changes in fitted parameters were required to provide accurate predictions of these data sets. This study provides further confirmation of the potential use of physiological modeling in understanding pharmacokinetics and pharmacodynamics.
منابع مشابه
Proposed Approach to Efficiently Develop Physiologically Based Pharmacokinetic (PBPK) & Physiologically Based Pharmacokinetic-Pharmacodynamic (PBPK-PD) Models for Pesticides
The standard approach to extrapolating from animals to humans (inter-species) or across the human population (intra-species) in risk assessment is to apply 10X uncertainty factors. In Science and Decisions: Advancing Risk Assessment (NRC, 2009), the NAS recommends that the agency “...continue and expand use of the best, most current science to support and revise default assumptions.” EPA publis...
متن کاملPrediction of Deoxypodophyllotoxin Disposition in Mouse, Rat, Monkey, and Dog by Physiologically Based Pharmacokinetic Model and the Extrapolation to Human
Deoxypodophyllotoxin (DPT) is a potential anti-tumor candidate prior to its clinical phase. The aim of the study was to develop a physiologically based pharmacokinetic (PBPK) model consisting of 13 tissue compartments to predict DPT disposition in mouse, rat, monkey, and dog based on in vitro and in silico inputs. Since large interspecies difference was found in unbound fraction of DPT in plasm...
متن کاملAnalysis of methylmercury disposition in humans utilizing a PBPK model and animal pharmacokinetic data.
Physiologically based pharmacokinetic (PBPK) models are excellent tools to aid in the extrapolation of animal data to humans. When the fate of the chemical is the same among species being compared, animal data can appropriately be considered as a model for human exposure. For methylmercury exposure, sufficient data exist to allow comparison of numerous mammalian species to humans. PBPK model va...
متن کاملMaximum Recommended Dosage of Lithium for Pregnant Women Based on a PBPK Model for Lithium Absorption
Treatment of bipolar disorder with lithium therapy during pregnancy is a medical challenge. Bipolar disorder is more prevalent in women and its onset is often concurrent with peak reproductive age. Treatment typically involves administration of the element lithium, which has been classified as a class D drug (legal to use during pregnancy, but may cause birth defects) and is one of only thirty ...
متن کاملPhysiologically Based Pharmacokinetic (PBPK) model for biodistribution of radiolabeled peptides in patients with neuroendocrine tumours
Objective(s): The objectives of this work was to assess the benefits of the application of Physiologically Based Pharmacokinetic (PBPK) models in patients with different neuroendocrine tumours (NET) who were treatedwith Lu-177 DOTATATE. The model utilises clinical data on biodistribution of radiolabeled peptides (RLPs) obtained by whole body scintigraphy (WBS) of the patients.Methods: The blood...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 56 1 شماره
صفحات -
تاریخ انتشار 2000